A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice.
نویسندگان
چکیده
Langat virus (LGT), the naturally attenuated member of the tick-borne encephalitis virus (TBEV) complex, was tested extensively in clinical trials as a live TBEV vaccine and was found to induce a protective, durable immune response; however, it retained a low residual neuroinvasiveness in mice and humans. In order to ablate or reduce this property, LGT mutants that produced a small plaque size or temperature-sensitive (ts) phenotype in Vero cells were generated using 5-fluorouracil. One of these ts mutants, clone E5-104, exhibited a more than 10(3)-fold reduction in replication at the permissive temperature in both mouse and human neuroblastoma cells and lacked detectable neuroinvasiveness for highly sensitive immunodeficient mice. The E5-104 mutant possessed five amino acid substitutions in the structural protein E and one change in each of the nonstructural proteins NS3 and NS5. Using reverse genetics, we demonstrated that a Lys(46)-->Glu substitution in NS3 as well as a single Lys(315)-->Glu change in E significantly impaired the growth of LGT in neuroblastoma cells and reduced its peripheral neurovirulence for SCID mice. This study and our previous experience with chimeric flaviviruses indicated that a decrease in viral replication in neuroblastoma cells might serve as a predictor of in vivo attenuation of the neurotropic flaviviruses. The combination of seven mutations identified in the nonneuroinvasive E5-104 mutant provided a useful foundation for further development of a live attenuated TBEV vaccine. An evaluation of the complete sequence of virus recovered from brain of SCID mice inoculated with LGT mutants identified sites in the LGT genome that promoted neurovirulence/neuroinvasiveness.
منابع مشابه
Attenuation of the Langat tick-borne flavivirus by chimerization with mosquito-borne flavivirus dengue type 4.
Langat virus (LGT) strain TP21 is the most attenuated of the tick-borne flaviviruses for humans. Even though LGT has low-level neurovirulence for humans, it, and its more attenuated egg-passage derivative, strain E5, exhibit significant neurovirulence and neuroinvasiveness in normal mice, albeit less than that associated with tick-borne encephalitis virus (TBEV), the most virulent of the tick-b...
متن کاملAttenuation of virulence of flaviviruses following passage in HeLa cells.
The ability of passage in HeLa cells to attenuate flaviviruses was investigated for three different strains of the mosquito-borne West Nile (WN) virus and two tick-borne viruses, louping-ill and Langat. One strain of WN virus, Sarawak, was attenuated 4000-fold for adult mice by intraperitoneal or intranasal challenge after six HeLa passages. The HeLa-passaged virus was also found to be antigeni...
متن کاملConcurrent micro-RNA mediated silencing of tick-borne flavivirus replication in tick vector and in the brain of vertebrate host
Tick-borne viruses include medically important zoonotic pathogens that can cause life-threatening diseases. Unlike mosquito-borne viruses, whose impact can be restrained via mosquito population control programs, for tick-borne viruses only vaccination remains the reliable means of disease prevention. For live vaccine viruses a concern exists, that spillovers from viremic vaccinees could result ...
متن کاملExperimental transmission of Karshi and Langat (tick-borne encephalitis virus complex) viruses by Ornithodoros ticks (Acari: Argasidae).
Selected species of mosquitoes and Ornithodoros ticks were evaluated for their potential to transmit Karshi and Langat (tick-borne encephalitis virus complex) viruses in the laboratory. Although there was no evidence of replication of Karshi virus in either of the two mosquito species tested [Ochlerotatus taeniorhynchus (Wiedemann) or Culex pipiens (L.)], Karshi virus replicated in and was tran...
متن کاملSiRNA Inhibits Replication of Langat Virus, a Member of the Tick-Borne Encephalitis Virus Complex in Organotypic Rat Brain Slices
Tick-borne encephalitis virus is the causative agent of tick-borne encephalitis, a potentially fatal neurological infection. Tick-borne encephalitis virus belongs to the family of flaviviruses and is transmitted by infected ticks. Despite the availability of vaccines, approximately 2000-3000 cases of tick-borne encephalitis occur annually in Europe for which no curative therapy is available. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 80 3 شماره
صفحات -
تاریخ انتشار 2006